Оценочные материалы при формировании рабочих программ дисциплин (модулей)

Направление подготовки / специальность: Информатика и вычислительная техника

Профиль / специализация: Системы автоматизированного проектирования

Дисциплина: Прикладная механика

Формируемые компетенции: УК-2

ПК-6

ПК-7

1. Описание показателей, критериев и шкал оценивания компетенций.

Показатели и критерии оценивания компетенций

Объект оценки	Уровни сформированности компетенций	Критерий оценивания результатов обучения
Обучающийся	Низкий уровень Пороговый уровень Повышенный уровень	Уровень результатов обучения не ниже порогового
	Повышенный уровень Высокий уровень	

Шкалы оценивания компетенций при сдаче зачета

Достигнутый уровень результата обучения	Характеристика уровня сформированности компетенций	Шкала оценивания
Пороговый уровень	Обучающийся: - обнаружил на зачете всесторонние, систематические и глубокие знания учебно-программного материала; - допустил небольшие упущения в ответах на вопросы, существенным образом не снижающие их качество; - допустил существенное упущение в ответе на один из вопросов, которое за тем было устранено студентом с помощью уточняющих вопросов; - допустил существенное упущение в ответах на вопросы, часть из которых была устранена студентом с помощью уточняющих вопросов	Зачтено
Низкий уровень	Обучающийся: - допустил существенные упущения при ответах на все вопросы преподавателя; - обнаружил пробелы более чем 50% в знаниях основного учебнопрограммного материала	Не зачтено

Описание шкал оценивания

Компетенции обучающегося оценивается следующим образом:

Планируемый	Содержание шкалы оценивания			
уровень	достигнутого уровня результата обучения			
результатов	Неудовлетворительно	Удовлетворительно	Хорошо	Отлично
освоения	Не зачтено	Зачтено	Зачтено	Зачтено

211071	Цеопособиост :	Обущеннийос	Обущающийся	Обущеннийос
Знать	Неспособность обучающегося самостоятельно продемонстрировать наличие знаний при решении заданий, которые были представлены преподавателем вместе с образцом их решения.	Обучающийся способен самостоятельно продемонстрировать наличие знаний при решении заданий, которые были представлены преподавателем вместе с образцом их решения.	Обучающийся демонстрирует способность к самостоятельному применению знаний при решении заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части	Обучающийся демонстрирует способность к самостоятельному применению знаний в выборе способа решения неизвестных или нестандартных заданий и при консультативной поддержке в части междисциплинарных связей.
			современных проблем.	
Уметь	Отсутствие у обучающегося самостоятельности в применении умений по использованию методов освоения учебной дисциплины.	Обучающийся демонстрирует самостоятельность в применении умений решения учебных заданий в полном соответствии с образцом, данным преподавателем.	Обучающийся продемонстрирует самостоятельное применение умений решения заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем.	Обучающийся демонстрирует самостоятельное применение умений решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей.
Владеть	Неспособность самостоятельно проявить навык решения поставленной задачи по стандартному образцу повторно.	Обучающийся демонстрирует самостоятельность в применении навыка по заданиям, решение которых было показано преподавателем	Обучающийся демонстрирует самостоятельное применение навыка решения заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем.	Обучающийся демонстрирует самостоятельное применение навыка решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей

2. Перечень вопросов и задач к экзаменам, зачетам, курсовому проектированию, лабораторным занятиям. Образец экзаменационного билета.

Примерный перечень вопросов к экзамену

Компетенция _УК-2_:

- 1. Гипотезы о твердом теле. Понятие напряжений в твердом теле.
- 2.Главные площадки тензора напряжений в плоском напряженном состоянии, простейшие виды напряженного состояния.
- 3.Деформации в твердом теле.
- 4. Связь деформаций и перемещений.
- 5.Закон Гука.
- 6.Связь деформаций и напряжений.
- 7. Испытания на растяжение.
- 8.Внутренние усилия в стержне.
- 9. Элементарные задачи теории стержня.
- 10. Теорема Журавского-Шведлера.

Компетенция ПК-6:

- 1.Построение эпюры изгибающих моментов.
- 2.Прямой изгиб стержня.
- 3. Уравнение изогнутой линии при прямом изгибе.
- 4. Расчет на прочность при прямом изгибе стержня.
- 5. Эпюра крутящих моментов.
- 6. Расчет на прочность при кручении круглого стержня.
- 7. Устойчивость стержней.
- 8. Определение критической силы.
- 9. Деформации и напряжения в тонкой пластине.
- 10. Упругопластическое кручение и изгиб стержня.
- 11. Уравнения равновесия пластины: вывод и постановка краевых задач.

Компетенция ПК-7_:

- 1. Равновесие пластины в плоском деформированном состоянии.
- 2. Метод Ритца.
- 3. Энергия деформации стержня при изгибе и кручении.
- 4. Понятие о вариационных методах теории упругости.
- 5. Характеристики плоских сечений: определения и методы вычисления.
- 6. Методика расчета вала при одновременном действии кручения и изгиба.
- 7. Решение уравнения равновесия пластины в виде двойных двадцати девяти тригонометрических рядов.
- 8.Применение принципа виртуальной работы к выводу уравнения равновесия стержня в двух взаимно перпендикулярных плоскостях.
- 9.Основы механики разрушения.
- 10. Энергетический и силовой критерии разрушения.
- 11. Расчет напряжений и деформаций в ступенчатом стержне при растяжении.
- 12. Исследование плоского напряженного состояния.

Примерный перечень вопросов к зачёту

Компетенция УК-2:

- 1. Гипотезы о твердом теле. Указать их смысл.
- 2.Понятие напряжений в твердом теле.
- 3.Главные площадки тензора напряжений в плоском напряженном состоянии, простейшие виды напряженного состояния.
- 4.Деформации в твердом теле.
- 5.Связь деформаций и перемещений.
- 6.Закон Гука.
- 7. Связь деформаций и напряжений.
- 8.Испытания на растяжение.
- 9.Внутренние усилия в стержне.
- 10.Сформулировать теорему Журавского-Шведлера в интегральном и дифференциальном виде, пояснить физический смысл величин.
- 11. Уравнение изогнутой линии при прямом изгибе и накладываемые на него краевые условия.

Компетенция <u>ПК-6</u>:

- 1. Алгоритм расчета на прочность при прямом изгибе стержня.
- 2. Алгоритм расчета на прочность при кручении круглого стержня.
- 3.Классификация кинематических пар. Условные обозначения, отличие высших и низших пар.
- 4.Построение векторной модели механизма. Связь с кинематической схемой. Применение для получения уравнений траектории точек механизма.
- 5.Постановка задач определения траекторий и скоростей точек механизма по векторной модели механизма.
- 6.Системы координат для кинематического анализа движения твердого тела.
- 7.Скорости точек твердого тела. Мгновенный центр скоростей.
- 8. Эвольвентное зацепление, его свойства.
- 9. Геометрические характеристики зубчатой передачи.

Компетенция ПК-7:

- 1.Доказательство постоянства передаточного отношения при эвольвентном зацеплении.
- 2.Силы, действующие в зацеплении зубчатой передачи.
- 3.Силовой расчет зубчатой передачи. Виды расчета.
- 4.Геометрические характеристики кулачкового механизма вида «поступательный толкатель с роликом».
- 5. Алгоритм построения центрового профиля кулачка.
- 6. Геометрические характеристики резьбовых соединений.

- 7. Расчет на прочность резьбового соединения без зазора. Момент завинчивания, его слагаемые и их определение.
- 8. Расчет резьбового соединения с зазором. Условие несдвигаемости соединения.
- 9.Основные принципы и гипотезы линейной теории пластин.
- 10. Теорема Кастилиано и интеграл Мора.
- 11. Правило Верещагина.
- 12. Теорема о трех моментах.
- 13. Метод вырезания узлов для расчета ферм.
- 14.Дать определение фермы и рамы. Какие силовые факторы отличны от нуля в элементах этих конструкций?
- 15. Канонические уравнения метода сил.

Примерный перечень вопросов к курсовой работе «Использование APM WinStructure 3D при расчёте стержневых конструкций»

Компетенция УК-2_:

- 1. Конечные элементы дискретных систем. Общие процедуры формирования и решения уравнений МКЭ.
- 2.Одномерные пружинные системы.
- 3. Матрица жесткости пружины.
- 4. Методика составления уравнений МКЭ.
- 5.Общие процедуры формирования систем линейных алгебраических уравнений МКЭ. Описание процедур.
- 6.Сопоставление глобальной нумерации объектов конечно-элементной аппроксимации с локальной.
- 7. Декартовы и естественные координаты. Преимущества.
- 8. Хранение глобальных матриц разрешающих СЛАУ.
- 9. Компактное хранение коэффициентов разрешающей системы.

Компетенция ПК-6_:

- 1.Методы: CSR. CSIR.
- 2.Понятие портрета матрицы, симметричность портрета.
- 3. Алгоритм вычисления произведения матрицы на вектор на базе метода хранения CSR.
- 4. Неполное LU разложение, преимущества в сравнении с полным.
- 5. Колебания механических систем.
- 6.Составление уравнений движения с использованием принципов МКЭ. Учет демпфирующих элементов.
- 7Расчет напряженно-деформированного состояния дискретных систем с учетом: пружинных, демпфирующих элементов, а также сосредоточенных масс.
- 8.Составление разрешающих СЛАУ МКЭ.
- 9. Устойчивость простейших пружинных систем.

Компетенция _ПК-7_:

- 1.Одномерные краевые задачи.
- 2.Общие этапы решения МКЭ двухточечной краевой задачи второго порядка.
- 3. Анализ вариантов граничных условий.
- 4. Обработка одномерных конечных элементов.
- 5. Двумерные краевые задачи. Постановка задачи. Физическая интерпретация постановки задачи.
- 6.Обработка двумерных конечных элементов.
- 7. Функции формы для одномерных и двумерных конечных элементов: одномерный, двумерный и трехмерный симплекс-элемент.
- 8. Местная система координат.
- 9.Одномерный, треугольный и тетраэдральный элементы высокого порядка.
- 10. Естественная система координат. Матрица Якоби.
- 11.Субпараметрические, изопараметрические и суперпараметрические элементы.
- 12. Эрмитовы конечные элементы.

Примерный перечень вопросов к контрольной работе № 1 «Расчёт напряжений в пластине методом конечных элементов в программе APM FEM 2D»

Компетенция <u>УК-2</u>:

- 1. Что такое пластина?
- 2. Что такое срединная поверхность пластины?
- 3. Что называется прогибом пластины?

Компетенция ПК-6:

- 1.Изложите гипотезы Кирхгофа.
- 2.Запишите уравнения равновесия элемента срединной поверхности пластины.
- 3. Приведите соотношения, описывающие плоское напряженное состояние пластины.
- 4. Что такое концентрация напряжений?

Компетенция _ПК-7_:

- 5.Как решается задача определения теоретического коэффициента концентрации напряжений в пластине с круглым отверстием?
- 6.Какие допущения принимаются при выводе уравнений теории изгиба пластин?
- 7. Запишите граничные условия для жестко защемленного, шарнирно опертого и свободного краев пластины.
- 8.Запишите выражение для полной энергии изгибаемой пластины.
- 9.Какие методы расчета пластин на изгиб вы знаете?

Примерный перечень вопросов к контрольной работе № 2 «Расчёт ферменных конструкций в программе APM Truss»

Компетенция <u>УК-2</u>:

- 1.Общее понятие о фермах. Классификация ферм.
- 2. Какие усилия появляются в элементах фермы и почему?
- 3. Какие элементы различают в фермах?
- 4.По каким признакам классифицируются фермы?
- 5.В чем отличие простых и сложных ферм?
- 6.Какими методами определяются усилия в стержнях ферм?
- 7.Определение усилий в стержнях ферм способом вырезания узлов. Признаки нулевых стержней.
- 8.В чем заключаются достоинства и недостатки способа вырезания узлов?
- 9. Каков порядок применения способа вырезания узлов?
- 10.Когда и как применяется метод моментной точки?

Компетенция ПК-6:

- 1.Какова зависимость усилий в поясных стержнях балочной фермы от ее высоты?
- 2.Определение усилий в стержнях ферм способом рассечения фермы на две части и рассмотрения равновесия одной из них.
- 3.Приведите частные случаи равновесия узлов фермы.
- 4.Определение усилий в стержнях ферм способом замкнутого сечения.
- 5.В каких случаях применяется способ замкнутого сечения?
- 6. Какая стержневая система называется плоской фермой?
- 7. Когда продольная сила в стержне фермы считается положительной?
- 8.Почему узлы фермы считаются шарнирными, а не жесткими?
- 9.Перечислите разновидности стержней фермы.
- 10. Назовите основные типоразмеры фермы (их обозначение).

Компетенция _ПК-7_:

- 1.По какой формуле определяется число степеней свободы фермы?
- 2. Какова идея (сущность) способа "вырезания узла" в ферме?
- 3.Сущность способа "сквозных сечений (моментной точки)"?
- 4. Что такое "моментная" точка при определении усилия в стержне?
- 5. Приведите формулу Мора для расчета перемещений фермы
- 6. Чем отличается расчетная схема фермы от реальной конструкции?
- 7. Какие усилия возникают в стержнях фермы (расчетной схемы) и почему?
- 8.Как определяются опорные реакции в балочных фермах?
- 9. Назовите основные элементы фермы?
- 10. Как найти положение моментной точки при определении усилий в элементах стержня?
- 11. Когда способ моментной точки применить нельзя?

Примерный перечень вопросов к контрольной работе № 3 «Расчёт балок Гербера в программе APM Structure 3D»

Компетенция УК-2_:

- 1. Какие балки называют «балки Гербера»?
- 2.Как определяются опорные реакции в статически определимых балках?
- 3.Определение изгибающего момента на примере расчета балки. Правило знаков для изгибающих моментов.

- 4.Определение перерезывающей силы на примере расчета балки. Правило знаков для перерезывающей силы.
- 5. Проверка правильности построения эпюр М и Q.
- 6.Система уравнений равновесия для расчета статически определимых стержневых систем.
- 7.Внутренние усилия в стержнях балок. Правила построения и свойства эпюр изгибающего момента и перерезывающих сил.

Компетенция <u>ПК-6</u>:

- 1.Как определяют опорные реакции в простых однопролетных балках?
- 2. Что такое перерезывающая сила в сечении?
- 3. Что собой представляет изгибающий момент в сечении?
- 4. На каких волокнах откладывается величина изгибающего момента?
- 5.Величина изгибающего момента по длине стержня (участка стержня) меняется по линейному закону, в каком случае?
- 6.На эпюре изгибающих моментов наблюдается точка излома, в каком случае?
- 7. На эпюре изгибающих моментов наблюдается скачок, в каком случае?

Компетенция ПК-7:

- 1. Чем определяется положительное направление внутренних усилий?
- 2. Что такое простое сечение в плоской расчетной схеме?
- 3. Какое правило знаков принято при построении эпюр М и Q?
- 4.Какой вид имеют эпюры изгибающих моментов и поперечных сил на участках, где отсутствует нагрузка?
- 5.Определение внутренних усилий в статически определимых балках.
- 6.Как изменяются изгибающий момент и поперечная сила на участке, где действует равномерно распределенная нагрузка q, или сосредоточенная сила F, или сосредоточенный момент M?
- 7. Чему равен момент в шарнире (или на шарнирной опоре) если бесконечно близко от него не приложен внешний сосредоточенный момент?
- 8. Что такое поэтажная схема? Когда она применяется?

Примерный перечень вопросов к лабораторной работе № 1 «Построение эпюр продольных сил и напряжений при центральном растяжении (сжатии)».

Компетенция УК-2:

- 1. Что понимается под растяжением-сжатием?
- 2.Какие случаи деформации бруса называются центральным растяжением или сжатием?
- 3.С помощью какого метода определяют внутренние силы при растяжении брусьев?
- 4.Как можно нагрузить прямой брус, чтобы он работал только на растяжение (сжатие)?
- 5. Какие внутренние силовые факторы возникают в поперечном сечении стержня при его растяжении или сжатии?
- 6.Как вычислить значение продольной силы в произвольном поперечном сечении бруса?
- 7. Что представляет собой эпюра продольных сил и как она строится?
- 8. Что такое продольная и поперечная деформация бруса при растяжении (сжатии) и какова зависимость между ними?
- 9. Что называется полной (абсолютной) продольной деформацией? Что представляет собой относительная продольная деформация? Каковы размерности абсолютной и относительной продольной деформаций?
- 10.По какой формуле определяется величина напряжения в поперечном сечении стержня?
- 11.Сформулируйте закон Гука для растяжения-сжатия? Приведите два выражения закона Гука и примеры их использования?
- 12. Что называется модулем упругости Е? Как влияет величина модуля Е на деформации бруса?
- 13. Что называется модулем Юнга? В каких единицах он измеряется?
- 14. Какие сечения стержня считаются опасными?
- 15. Как определяется абсолютная продольная деформация?
- 16. Что представляет собой эпюра продольных перемещений?
- 17. Что называется жесткостью бруса при растяжении (сжатии)?
- 18. Что происходит с поперечными размерами бруса при его растяжении и сжатии?
- 19.Как определяется удлинение (укорочение) участка бруса с постоянным поперечным сечением и постоянной продольной силой по всей его длине?
- 20. Как распределены нормальные напряжения σ_x в поперечных сечениях центрального растянутого бруса и чему они равны?
- 21.В каких сечениях растянутого бруса возникают наибольшие нормальные напряжения?
- 22. Как выполняются расчеты на прочность и жесткость при растяжении?
- 23. Какие типы задач можно решить с учетом расчета на прочность?
- 24. Что называется допускаемым напряжением? Как оно выбирается для пластичных и хрупких материалов?
- 25. Что называется коэффициентом запаса прочности и от каких основных факторов зависит его величина?
- 26. Какие три характерных типа задач встречаются при расчете прочности конструкции?

Примерный перечень вопросов к лабораторной работе № 2 «Расчёт однопролётной балки на прочность при изгибе».

Компетенция <u>ПК-6</u>:

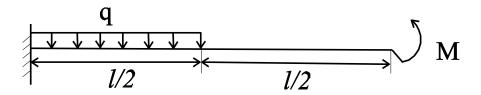
- 1. Что называется балкой?
- 2. Какой вид нагружения называется изгибом?
- 3.Дайте определение понятия "прямой чистый изгиб", "прямой поперечный изгиб"?
- 4.Какие основные типы опор применяются для закрепления балок к основанию?
- 5. Какие опорные закрепления может иметь статически определимая балка?
- 6.Какие уравнения статики (равновесия) используются для определения опорных реакций?
- 7. Как записывается закон Гука при изгибе балки?
- 8. Что называется нейтральной осью поперечного сечения при изгибе и как она расположена?
- 9. Что называется осевым моментом сопротивления при изгибе? В каких единицах он измеряется?
- 10. Какое сечение имеет больший момент сопротивления при одинаковой площади: круглое или квадратное?
- 11. Когда в поперечных сечениях балки возникают касательные напряжения?
- 12.По какой формуле вычисляются касательные напряжения, возникающие в поперечном сечении балки при изгибе?
- 13. Как распределяются касательные напряжения по поперечному сечению балки прямоугольного, круглого и 14.двутаврового поперечных сечений при изгибе?
- 15.Как проводится расчет на прочность балки по нормальным напряжениям, как формулируется условие прочности?
- 16. Как аналитически и графически определить величину экстремальных касательных напряжений?
- 17. Запишите условия прочности балки по нормальным и по касательным напряжениям?
- 18.Как находится изгибающий момент в каком-либо сечении балки? В каком случае изгибающий момент считается положительным?
- 19.Как находится поперечная сила в каком-либо сечении балки? Когда поперечная сила считается положительной?
- 20.Показать, как на эпюре перерезывающих сил проверяется правильность построения эпюры изгибающих моментов.
- 21.Как производится полная проверка прочности двутавровой балки при прямом поперечном изгибе?
- 22. Напишите формулу для определения нормального напряжения в произвольной точке поперечного сечения бруса, работающего на изгиб. Какой момент инерции входит в указанную формулу?
- 23. Какие напряжения возникают в поперечном сечении балки при чистом изгибе, как они направлены, как они изменяются по высоте балки и как вычисляются?
- 24. Как распределяются нормальные напряжения σ по высоте сечения балки?
- 25. Что такое нейтральная ось сечения балки и где она расположена? Чему равняется статический момент сечения балки относительно нейтральной оси?
- 26.По какой формуле определяются нормальные напряжения в сечениях балки при чистом и поперечном изгибах?
- 27. Как распределены нормальные напряжения по сечению балки при изгибе?
- 28. Как записывается условие прочности по нормальным напряжениям при изгибе?
- 29. Какой параметр в условии прочности используется для определения размеров сечения?
- 30. Как записывается условие прочности при изгибе?
- 31.По какой формуле определяются касательные напряжения при поперечном изгибе? Как распределены эти напряжения по сечению?
- 32. Условия прочности балки по нормальным и касательным напряжениям.
- 33. Расчеты на прочность при изгибе. Подбор сечения. Определение допускаемых нагрузок.
- 34. Как распределяются нормальные и касательные напряжения по поперечному сечению балки прямоугольного профиля?

Примерный перечень вопросов к лабораторной работе № 3 «Расчет вала на прочность при изгибе с кручением».

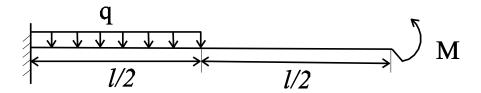
Компетенция ПК-7_:

- 1.Какие внутренние силовые факторы возникают в поперечных сечениях вала при совместном действии изгиба и кручения? Какие из них учитывают в расчетах? Какие им соответствуют напряжения?
- 2. Какие напряжения возникают при совместной деформации кручения и изгиба и как они вычисляются?
- 3.Как записывается условие прочности по третьей и четвертой гипотезам прочности через главные напряжения?
- 4.Где находится опасное сечение вала и как оно определяется?
- 5. Каким образом определяется диаметр вала из условий прочности по третьей и четвертой гипотезам прочности?
- 6.Какие коэффициенты принимаются при расчете величин крутящего момента при различных единицах измерения передаваемой мощности и заданном числе оборотов?

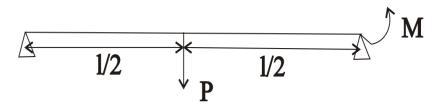
- 7.Опишите порядок расчета диаметра вала при кручении с изгибом?
- 8.Как находятся опасные сечения стержня при изгибе с кручением?
- 9.Какие точки круглого бруса являются опасными и какое напряженное состояние в этих точках при кручении с изгибом?
- 10.В каких точках круглого поперечного сечения возникают наибольшие напряжения при изгибе с кручением?
- 11. Как пишутся условия прочности стержня по всем четырем теориям, если известны σ_{ii} и τ_k ?
- 12. Как находится величина расчетного момента при изгибе с кручением стержня круглого поперечного сечения?
- 13.По какой теории прочности (III или IV) получится большая величина расчетного момента при заданных величинах Mu и Mk?
- 14. Выведите формулу для определения расчётного момента при совместном действии изгиба и кручения по *III* и *IV* теориям прочности?
- 15. Какие точки являются опасными в стержне прямоугольного сечения при изгибе с кручением?

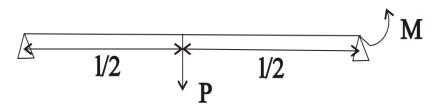

Примерный перечень вопросов к лабораторной работе № 4 «Статический расчёт плоской рамы».

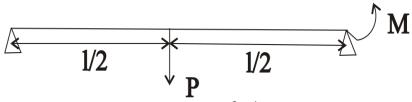
Компетенция ПК-7:

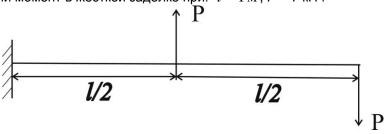

- 1. Как определяются опорные реакции в статически определимых рамах?
- 2.Определение изгибающего момента на примере расчета рамы. Правило знаков для изгибающих моментов.
- 3. Определение поперечной силы на примере расчета рамы. Правило знаков для поперечной силы.
- 4.Определение продольной силы N на примере расчета рамы. Правило знаков для продольной силы.
- 5.Проверка правильности построения эпюр M, N, Q.
- 6.Система уравнений равновесия для расчета статически определимых стержневых систем. Ее особенности в случае геометрической изменяемости системы.
- 7.Внутренние усилия в стержнях рам. Правила построения и свойства эпюр изгибающего момента, поперечной и продольной сил.
- 8.На каких волокнах откладывается величина изгибающего момента?
- 9.Величина изгибающего момента по длине стержня (участка стержня) меняется по линейному закону, в каком случае?
- 10.На эпюре изгибающих моментов наблюдается точка излома, в каком случае?
- 11. На эпюре изгибающих моментов наблюдается скачок, в каком случае?
- 12. Чем определяется положительное направление внутренних усилий?
- 13. Что такое простое сечение в плоской расчетной схеме?
- 14. Какое правило знаков принято при построении эпюр М и Q?
- 15. Какой вид имеют эпюры изгибающих моментов и поперечных сил на участках, где отсутствует нагрузка?
- 16.Определение внутренних усилий в статически определимых рамах. Построение эпюр M, \dot{Q} , N в статически определимых рамах.
- 17. Чему равен момент в шарнире (или на шарнирной опоре) если бесконечно близко от него не приложен внешний сосредоточенный момент?
- 18.Определение внутренних усилий в стержнях сложных статически определимых рам. Способы контроля правильности построенных эпюр внутренних усилий.

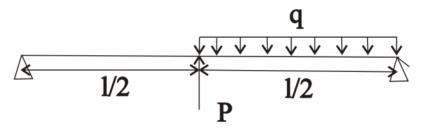
Компетенция _УК-2___:


1. Чему равен изгибающий момент в жёсткой заделке при: $l=1\,\mathrm{M}$, $q=2\,\mathrm{\kappa H/M}$, $M=2\,\mathrm{\kappa H\cdot M}$:

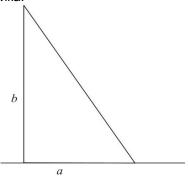

2. Чему равна поперечная сила в жёсткой заделке при: $l=1\,\mathrm{M}\,,\;\;q=2\,\mathrm{\kappa H/M}\,,\;\;M=2\,\mathrm{\kappa H\cdot M}\,:$


3. Чему равен изгибающий момент в середине пролёта при: $l=1\,\mathrm{m}$, $P=6\,\mathrm{kH}$, $M=2\,\mathrm{kH}\cdot\mathrm{m}$:

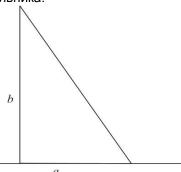

4. Чему равна поперечная сила на левой опоре при: $l=1\,\mathrm{M}$, $P=4\,\mathrm{kH}$, $M=2\,\mathrm{kH}\cdot\mathrm{M}$:


5. Чему равна поперечная сила на правой опоре при: $l=1\,\mathrm{M}$, $P=5\,\mathrm{kH}$, $M=2\,\mathrm{kH}\cdot\mathrm{M}$:

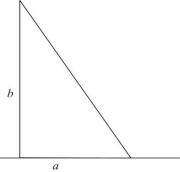
6. Чему равен изгибающий момент в жёсткой заделке при: $\it l=1\,{\rm M}$, $\it P=7\,{\rm kH}$:

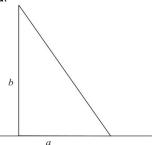


7. Чему равен изгибающий момент в середине пролёта при: I = 3 м, P = 6 кH, q = 10 кH/м :



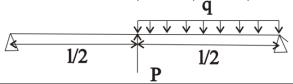
Компетенция _ПК-6_:


1. Чему равен момент инерции прямоугольного треугольника с основанием a=15 см и катетом b=25 см относительно основания этого треугольника:


2. Чему равен момент инерции прямоугольного треугольника с основанием a=18 см и катетом b=7 см относительно центра тяжести этого треугольника:

3. Чему равен момент инерции прямоугольного треугольника с основанием a=8 см и катетом b=17 см относительно центра тяжести этого треугольника:

4. Чему равен момент инерции прямоугольного треугольника с основанием а = 26 см и катетом b = 19 см относительно основания этого треугольника:


Компетенция ПК-7:

- 1. Проверить на устойчивость сжатую стойку из хромомолибденовой стали ([σ] = 540 МПа, E = 2,15 10⁵ МПа), длиной I = 1 M. и с кольцевым поперечным сечением (внутренний и внешний диаметры кольца d_0 = 64 M M0, нагруженную силой E = 150 M1. Коэффициент приведения длины μ = 0,7. Найти коэффициент запаса устойчивости.
- 2. Проверить на устойчивость сжатую стойку из углеродистой стали ([σ] = 420 МПа, E = 2 10 5 МПа), длиной I = 2,5 м. и с кольцевым поперечным сечением (внутренний и внешний диаметры кольца d_0 = 62 мм, d = 80 мм), нагруженную силой F = 120 кH. Коэффициент приведения длины μ = 0,7. Найти коэффициент запаса устойчивости.
- 3. Определить критическую силу для сжатой стойки из углеродистой стали Cm.3 ($E = 2 \cdot 10^5$ $M\Pi a$, a = 310 $M\Pi a$, b = 1,14 $M\Pi a$), длиной l = 1,6 m. и с круглым поперечным сечением (диаметр d = 90 m). Коэффициент приведения длины $\mu = 0,5$.
- 4. Определить критическую силу для сжатой стойки из углеродистой стали Cm.3 ($E=2 \cdot 10^5$ $M\Pi a$, a=310 $M\Pi a$, b=1,14 $M\Pi a$), длиной I=2,4 m., с квадратным поперечным сечением (сторона квадрата a=140 mm), коэффициент приведения длины $\mu=2$.
- 5. Определить критическую силу для сжатой стойки из углеродистой стали Cm.3 ($E=2 \cdot 10^5 \, M\Pi a, a=310 \, M\Pi a, b=1,14 \, M\Pi a$), длиной $I=1,87 \, m$., с прямоугольным поперечным сечением (высота $h=180 \, m$, ширина $b=100 \, m$), коэффициент приведения длины $\mu=1$.
- 6. Определить критическую силу для сжатой стойки из углеродистой стали Cm.2 ($E=2,1 \cdot 10^5$ $M\Pi a$, a=310 $M\Pi a$, b=1,14 $M\Pi a$), длиной I=3 m., с прямоугольным поперечным сечением (высота h=200 m, ширина b=140 m), коэффициент приведения длины $\mu=0,7$.
- 7. Проверить на устойчивость сжатую стойку из углеродистой стали Cm.3 ([σ] = 160 $M\Pi a$, E = 2 10⁵ $M\Pi a$), длиной I = 2 M, с поперечным сечением из двух прокатных M = 0,5. Найти коэффициент запаса устойчивости.

Образец экзаменационного билета

Кафедра (к910) «Вычислительная техника и компьютерная графика» семестр, 20/20 уч.г. Зкзаменатор доцент Фалеев М.Д. — Кафедра — Экзаменационный билет № 5 по дисциплине «Прикладная механика» «Прикладная механика» «ВТиКГ» «Утверждаю» Зав. кафедрой «ВТиКГ» Фалеева Е.В., к.т.н., доцен «» 20 г.	Дальневосточный государственный университет путей сообщения				
техника и компьютерная графика» «Прикладная механика» «ВТиКГ» для направления подготовки / специальности 09.03.01. Информатика и вычислительная техника профиль/специализация Фалеева Е.В., к.т.н., доцен 09.03.01. Системы автоматизированного «» 20 г.	Кафедра	Экзаменационный билет № 5	«Утверждаю»		
графика» для направления подготовки / специальности 09.03.01. Информатика и вычислительная техника профиль/специализация Фалеева Е.В., к.т.н., доцен 09.03.01. Системы автоматизированного «» 20 г.	(к910) «Вычислительная	по дисциплине	Зав. кафедрой		
семестр, 20/20 уч.г.	техника и компьютерная	«Прикладная механика»	«ВТиКГ»		
семестр, 20/20 уч.г. профиль/специализация Фалеева Е.В., к.т.н., доцен Экзаменатор 09.03.01. Системы автоматизированного «» 20 г.	графика»	для направления подготовки / специальности			
	Экзаменатор	09.03.01. Информатика и вычислительная техника профиль/специализация 09.03.01. Системы автоматизированного	Фалеева Е.В., к.т.н., доцент		

- 1. Определение перемещений и потенциальной энергии деформации в растянутом стержне (УК-2, ПК-6, ПК-7).
- 2. Задача (УК-2): Чему равен изгибающий момент в середине пролёта при: I=4 м, P=7 кH, q=12 кH/м :

3. Задача (ПК-7): Определить критическую силу для сжатой стойки из углеродистой стали Cm.2 ($E=2.1 \cdot 10^5$ $M\Pi a$, a=310 $M\Pi a$, b=1.14 $M\Pi a$), длиной l=2.3 m., с прямоугольным поперечным сечением (высота h=220 m, ширина b=1.30 m), коэффициент приведения длины $\mu=0.5$.

Примечание. В каждом экзаменационном билете должны присутствовать вопросы, способствующих формированию у обучающегося всех компетенций по данной дисциплине.

3. Тестовые задания. Оценка по результатам тестирования. Примерные задания теста Задание 1 (УК-2) Выберите правильный вариант ответа. Условие задания: На участке балки действует равномерно распределенная поперечная нагрузка. Внутреннее поперечное усилие в балке: □ является постоянной □ равна нулю □ изменяется по линейному закону ☑ изменяется по закону квадратной параболы Задание 2 (УК-2) Выберите правильный вариант ответа. Условие задания: При сжатии стержня знак нормального напряжения: □ положительный ☑ отрицательный □ не определен Задание 3 (УК-2) Выберите правильный вариант ответа. Условие задания: При продольном растяжении стержня в точке скачка диаметра поперечного сечения на эпюре нормальных усилий будет: □ скачок □ излом ☑ ничего не будет Задание 4 (УК-2) Выберите правильный вариант ответа. Условие задания: При чистом сдвиге в трубе на ее концах приложены противоположно направленные: □ изгибающие моменты □ нормальные силы □ поперечные силы ☑ крутящие моменты Задание 5 (ПК-6) Приведите в возрастающей последовательности...: Последовательность расчета вала в программе WinShaft: 1: Построить сегменты вала, задать диаметры и длины сегментов 2: Задать закрепление вала, способ его нагружения и действующие на него крутящие моменты 3: Нажать кнопку "Расчет" 4: Задать ресурс работы вала 5: Выполнить расчет и просмотреть результаты Правильный ответ: 1; 2; 3; 4; 5 Задание 6 (ПК-6) Приведите в возрастающей последовательности...: Последовательность расчета балки в программе WinBeam: 1: Построить сегмент балки 2: Задать сечение балки 3: Задать опоры и нагрузки на балку

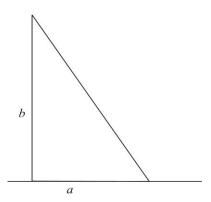
4: Нажать кнопку "Расчет" **5**: Нажать кнопку "Результаты" **Правильный ответ: 1**; **2**; **3**; **4**; **5**

Задание 7 (ПК-6)

Выберите правильный вариант ответа.

Условие задания:

Задача определения размеров поперечного сечения балки по заданным нагрузкам называется расчетом на...

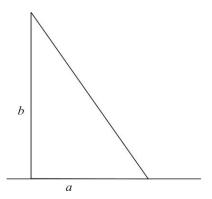

Правильный вариант ответа: прочность

Задание 8 (ПК-6)

Рассчитайте: момент инерции прямоугольного треугольника с основанием **a** и катетом **b** относительно основания этого треугольника.

Исходные данные:

- 1. Ширина основания: а = 27 см;
- 2. Высота: b = 16 см.
- 3. Расчётная схема:


Правильный ответ: 9216 см⁴

Задание 9 (ПК-6)

Рассчитайте: момент инерции прямоугольного треугольника с основанием **a** и катетом **b** относительно основания этого треугольника.

Исходные данные:

- 1. Ширина основания: а = 12 см;
- 2. Высота: b = 40 см.
- 3. Расчётная схема:

Правильный ответ: 64000 см⁴

Задание 10 (ПК-7)

Рассчитайте: критическую силу для сжатой стойки из углеродистой стали Cm.3 ($E = 2 \cdot 10^5 \, M\Pi a$, $a = 310 \, M\Pi a$, $b = 1,14 \, M\Pi a$), длиной $I = 1,26 \, m$. и с круглым поперечным сечением (диаметр $d = 86 \, m$), коэффициент приведения длины $\mu = 2$.

Исходные данные:

- 1. Модуль Юнга: $E = 2 \cdot 10^5 \, \text{МПа}$;
- 2. Коэффициенты для расчёта по формуле Ясинского:
- 2.1. a = 310 MΠa;
- 2.2. b = 1,14 MΠa;
- 3. Длина стойки: I = 1,26 м;
- 4. Диаметр стойки: d = 86 мм;
- 5. Длина стойки: I = 1,26 м;
- 6. Коэффициент приведения длины: μ = 2.

Правильный ответ: 833,37 кН

Задание 11 (ПК-7)

Рассчитайте: критическую силу для сжатой стойки из углеродистой стали Cm.3 ($E=2 \cdot 10^5$ $M\Pi a, a=310$ $M\Pi a, b=1,14$ $M\Pi a$), длиной I=1,26 M. и с круглым поперечным сечением (диаметр d=86 M M), коэффициент приведения длины $\mu=2$.

Исходные данные:

- 1. Модуль Юнга: $E = 2 \cdot 10^5 \, \text{МПа}$;
- 2. Коэффициенты для расчёта по формуле Ясинского:
- 2.1. a = 310 MΠa;
- 2.2. $b = 1,14 M\Pi a;$
- 3. Длина стойки: *I* = 1,26 м;
- 4. Диаметр стойки: d = 86 мм;
- 5. Коэффициент приведения длины: $\mu = 2$.

Правильный ответ: 833,37 кН

Задание 12 (ПК-7)

Рассчитайте: критическую силу для сжатой стойки из углеродистой стали Cm.2 ($E = 2,1 \cdot 10^5$ $M\Pi a$, a = 310 $M\Pi a$, b = 1,14 $M\Pi a$), длиной I = 4 m., с прямоугольным поперечным сечением (высота h = 200 m, ширина b = 120 m), коэффициент приведения длины $\mu = 1$.

- 1. Модуль Юнга: $E = 2.1 \cdot 10^5 \, \text{МПа}$;
- 2. Коэффициенты для расчёта по формуле Ясинского:
- 2.1. a = 310 MΠa;
- 2.2. $b = 1,14 M\Pi a;$
- 3. Длина стойки: *I* = 4 м;
- 4. Высота прямоугольного сечения: h = 200 мм;
- 5. Ширина прямоугольного сечения: b = 120 мм;
- 6. Коэффициент приведения длины: $\mu = 1$.

Правильный ответ: 3726,93 кН

Задание 13 (ПК-7)

Рассчитайте: критическую силу для сжатой стойки из углеродистой стали Cm.3 ($E = 2 \cdot 10^5 \, M\Pi a$, $a = 310 \, M\Pi a$, $b = 1,14 \, M\Pi a$), длиной $I = 3,6 \, m$., с квадратным поперечным сечением (сторона $a = 90 \, m$), коэффициент приведения длины $\mu = 1$.

- 1. Модуль Юнга: $E = 2 \cdot 10^5 \, \text{МПа}$;
- 2. Коэффициенты для расчёта по формуле Ясинского:
- 2.1. a = 310 MΠa;
- 2.2. b = 1,14 Μ Π a;
- 3. Длина стойки: I = 3,6 м;
- 4. Высота прямоугольного сечения: а = 90 мм;
- 5. Коэффициент приведения длины: $\mu = 1$.

Правильный ответ: 831,9 кН

Задание 14 (ПК-7)

Рассчитайте: критическую силу для сжатой стойки из углеродистой стали Cm.2 ($E=2,1 \cdot 10^5$ $M\Pi a$, a=310 $M\Pi a$, b=1,14 $M\Pi a$), длиной I=4 m., с поперечным сечением из прокатного двутавра № 30 (минимальный момент инерции $I_{min}=3.37$ cm^4 , минимальный радиус инерции $I_{min}=2,69$ cm, площадь сечения A=46,5 cm^2), коэффициент приведения длины $\mu=0,5$.

- 1. Модуль Юнга: $E = 2,1 \cdot 10^5 \, \text{МПа};$
- 2. Коэффициенты для расчёта по формуле Ясинского:
- 2.1. a = 310 MΠa;
- 2.2. $b = 1,14 M\Pi a;$
- 3. Длина стойки: I = 4 м;
- 4. Площадь сечения: $A = 46,5 \text{ cm}^2$;
- 5. Минимальный момент инерции $I_{min} = 337 \text{ cm}^4$;
- 6. Минимальный радиус инерции $i_{min} = 2,69$ см;
- 7. Коэффициент приведения длины: $\mu = 0.5$.

Правильный ответ: 1047,37 кН

Полный комплект тестовых заданий в корпоративной тестовой оболочке АСТ размещен на сервере УИТ ДВГУПС, а также на сайте Университета в разделе СДО ДВГУПС (образовательная среда в личном кабинете преподавателя).

Соответствие между бальной системой и системой оценивания по результатам тестирования устанавливается посредством следующей таблицы:

Объект оценки	Показатели оценивания результатов обучения	Оценка	Уровень результатов обучения
Обучающийся	60 баллов и менее	«Неудовлетворительно»	Низкий уровень
	74 – 61 баллов	«Удовлетворительно»	Пороговый уровень
	84 – 75 баллов	«Хорошо»	Повышенный уровень
	100 – 85 баллов	«Отлично»	Высокий уровень

^{4.} Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета, курсового проектирования.

Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета

	Содержание шкалы оценивания			
Элементы оценивания	Неудовлетворительно	Удовлетворительно	Хорошо	Отлично
	Не зачтено	Зачтено	Зачтено	Зачтено
Соответствие ответов формулировкам вопросов (заданий)	Полное несоответствие по всем вопросам	Значительные погрешности	Незначительные погрешности	Полное соответствие
Структура, последовательность и логика ответа. Умение четко, понятно, грамотно и свободно излагать свои мысли	Полное несоответствие критерию.	Значительное несоответствие критерию	Незначительное несоответствие критерию	Соответствие критерию при ответе на все вопросы.
Знание нормативных, правовых документов и специальной литературы	Полное незнание нормативной и правовой базы и специальной литературы	Имеют место существенные упущения (незнание большей части из документов и специальной литературы по	Имеют место несущественные упущения и незнание отдельных (единичных) работ из числа	Полное соответствие данному критерию ответов на все вопросы.
Умение увязывать теорию с практикой, в том числе в области профессиональной работы	Умение связать теорию с практикой работы не проявляется.	вопросы теории и	Умение связать вопросы теории и практики в основном проявляется.	Полное соответствие данному критерию. Способность интегрировать знания и привлекать
Качество ответов на дополнительные вопросы	На все дополнительные вопросы преподавателя даны неверные ответы.	Ответы на большую часть дополнительных вопросов преподавателя даны неверно.	1. Даны неполные ответы на дополнительные вопросы преподавателя. 2. Дан один неверный ответ на	Даны верные ответы на все дополнительные вопросы преподавателя.

Примечание: итоговая оценка формируется как средняя арифметическая результатов элементов оценивания.